	Header

	ICTPRG302
Apply introductory programming techniques

	Assessment Tool for ICT30120

	

	
	[image: image1.png]TEIA

All websites referred to in this resource were accessed and deemed appropriate at time of publication.

TEIA Ltd apologises unreservedly for any copyright infringement that may have occurred and invites copyright owners to contact TEIA so any violation may be rectified.
© 2021 TEIA
www.teia.edu.au
Ver. 1-1
Contents

1ICTPRG302

1Apply introductory programming techniques

1Contents

1Introduction

2Section 1 - Unit of competency

31.1
Elements of competency and performance criteria

41.2
Assessment requirements

51.3
Dimensions of competency

61.4
Foundation skills

71.5
Skill sets

71.6
Recognition of prior learning (RPL)

81.7
Glossary of terms

11Section 2 - Assessment tools

122.1
Summative assessment

212.2
Solutions - General guidance

222.3
Solutions – Summative assessment

532.4
Evidence of competency

542.5
Assessment records

56Assessment instructions – ICTPRG302

57Pre-assessment checklist – ICTPRG302

58Self-assessment record – ICTPRG302

59Performance evidence checklist – ICTPRG302

60Knowledge evidence checklist – ICTPRG302

61Portfolio of evidence checklist – ICTPRG302

62Workplace assessment checklist – ICTPRG302

63Observation Checklist/Third Party Report

66Record of Assessment

68Request for Qualification Issue

70Glossary

Introduction
This set of assessment tools is for the unit of competency ICTPRG302 Apply introductory programming techniques.

The guide is divided into three sections:

Section 1:
Unit of competency

Section 2:
Assessment resources

Glossary (VET sector terminology)

As the trainer, you are in the best position to judge the full training and assessment requirements of a unit of competency. The judgments that you make in this regard should form part of your broader training and assessment strategy.

Learners may or may not be employed in the workplace. Where a learner is currently employed, you should endeavour to use relevant workplace documents and resources. Where learners are not currently employed, you must provide example documentation and a simulated environment wherever possible. Encourage classroom learners to take every opportunity to observe a real working environment and discuss what they have seen. Note that observation and assessment in the workplace is mandatory for some units of competency. Refer to section 1.2 of this guide, or to the assessment requirements of the relevant unit of competency, for details of assessment conditions.
This document and set of assessment tools must be used in conjunction with the directions that form part of the qualification’s Training and Assessment Strategy. Assessors must refer to the ICT30120 Training and Assessment Strategy for details on mandatory tool use.

Note that this booklet is designed to be dismantled so that assessors may identify what assessment tools they may wish to use to support the assessment process and provide credible and verifiable evidence to support appropriate decision making.

Section 1 - Unit of competency

The Information and Communications Technology Training Package (ICT) was developed by the PwC’s Skills for Australia in consultation with industry stakeholders including employers, unions, peak bodies, professional associations, regulatory bodies, registered training organisations (RTOs) and other relevant parties. The training package specifies the skills and knowledge required to perform effectively in the workplace.

This unit, ICTPRG302 Apply introductory programming techniques, is drawn from Release 7.2 of this Training Package.
This section outlines the requirements of the unit of competency ICTPRG302 Apply introductory programming techniques and other information relevant to it.

It contains the following information:

1.1
Elements of competency and performance criteria

1.2
Assessment requirements
1.3
Dimensions of competency

1.4
Foundation skills
1.5
Skill sets

1.6
Recognition of prior learning (RPL)
1.7
Glossary of terms
1.1
Elements of competency and performance criteria

The elements of competency define the skills required to perform a work activity. They describe the required outcomes that need to be assessed.

The performance criteria define the level of skill necessary to achieve the requirements of the element.

The following table maps the content in the on-line course ICTPRG302 Apply introductory programming techniques to the unit of competency.

	ICTPRG302 Apply introductory programming techniques
	Where covered in on-line course

	Element 1: Establish application task

	1.1
Clarify task with required personnel
	Task 1

	1.2
Identify design specifications, programming standards and guidelines according to task requirements
	Task 1

	Element 2: Apply language syntax and layout

	2.1
Apply basic language syntax rules
	Task 1

	2.2
Create code using language data types, operators and expressions
	Task 1

	2.3
Apply variables and variable scope
	Task 1

	2.4 Use program library functions
	Task 1

	2.5 Clarify meaning of code using commenting techniques
	Task 1

	Element 3: Apply control structures

	3.1
Apply language syntax in sequence, selection, and iteration constructs
	Task 1

	3.2
Create expressions in selection and iteration constructs using logical operators
	Task 1

	Element 4: Code using standard programming algorithms

	4.1 Develop algorithms using sequence, selection, and iteration constructs
	Task 1

	4.2 Create and use data structures
	Task 1

	4.3 Code standard sequential access algorithms used in reading and writing text files
	Task 1

	4.4 Apply string manipulation
	Task 1

	Element 5: Test code

	5.1 Examine variable contents and use debugging techniques to detect and correct errors
	Task 1

	5.2 Create and conduct simple tests and confirm code meets design specification
	Task 1

	5.3 Document actions carried out and results of tests performed
	Task 1

	Element 6: Create a simple application and seek feedback

	6.1 Design an algorithm in response to basic program specifications
	Task 1

	6.2 Develop application to meet program specification
	Task 1

	6.3 Confirm application meets initial specifications
	Task 1

	6.4 Present application to required personnel
	Task 1

	6.5 Obtain feedback and sign off from required personnel
	Task 1

1.2
Assessment requirements

ICTPRG302 Apply introductory programming techniques covers the outcomes, skills and knowledge required to create simple applications through introductory programming techniques.

It applies to those who have responsibility for creating applications and includes applying language syntax, control structures to create code, using programming standards, testing and debugging.

The assessment requirements consist of three criteria:

· Performance evidence: details the skills to be demonstrated, the consistency of performance (for example, on how many occasions, in what range of situations, using what range of equipment) and any licensing, regulatory or registration requirements
· Knowledge evidence: the scope and depth of knowledge required
· Assessment conditions: specify where assessment can take place, what resources are required and what interactions with other people are required
Performance evidence
The performance evidence for the unit ICTPRG302 Apply introductory programming techniques consists of at least one event where the candidate designs and builds one simple application according to programming standards and program specifications.
During the above, the candidate must:

· apply programming language syntax, sequence, selection and iteration constructs.
· document changes and tests performed.
· review code according to feedback obtained during design and development of application.
Knowledge evidence
The knowledge evidence within the unit ICTPRG302 Apply introductory programming techniques consists of:

· language data types, operators, expressions and variables
· basic language syntax rules

· sequence, selection and iteration constructs

· the development of small-sized applications

· industry programming standards and guidelines

· commenting techniques

· debugging techniques

· application testing methods

· basic data structures.

Assessment conditions
Skills must be demonstrated in in a workplace or simulated environment where the conditions are typical of those in a working environment in this industry.
Simulations and scenarios are acceptable. Simulated assessment environments must simulate the real-life working environment where these skills and knowledge would be performed, with all the relevant equipment and resources of that working environment.
The assessment environment must include access to:

· programming standards and guidelines
· programming software

· required hardware and its components

· industry standard software development tools

· an integrated development environment (IDE).

Assessment must ensure use of relevant legislation, policies and procedures and industrial awards.

Assessors must satisfy the NVR/AQTF mandatory competency requirements for assessors.
1.3
Dimensions of competency

The dimensions of competency relate to all aspects of work performance. The following table explores the four dimensions of competency in more detail.

	Dimensions of competency
	What it means

	Task skills
	The candidate must perform the individual skills required to complete a work activity to the required standard.

	Task management skills
	The candidate must manage several different tasks to complete a whole work activity, such as working to meet deadlines.

	Contingency management skills
	The candidate must use their problem-solving skills to resolve issues that arise when performing a work activity.

	Job/role environment skills
	The candidate must perform effectively in the workplace when undertaking a work activity by working well with all stakeholders and following workplace policies and procedures.

Assessors and/or their training organisations need to ensure that the range of assessment instruments developed for this unit adequately explore the dimensions of competency.
1.4
Foundation skills

Underpinning all job roles is a set of skills that are essential if learners are to participate successfully in work and be valuable and productive employees.
The foundation skills embedded in this unit of competency are outlined below:
	Skill
	Performance
Criteria
	Description

	Oral Communication
	1.1, 6.4, 6.5
	· Uses listening and questioning techniques to confirm requirements and articulate complex concepts

	Numeracy
	2.2, 2.3, 3.2, 4.1, 4.3, 4.4, 6.1
	· Confirms program specifications are met using mathematical formulae

	Writing
	2.2, 2.3, 3.1, 4.3, 5.3,
	· Writes and edits code and technical data in a logical manner using required syntax

· Develops documentation outlining changes and tests performed using appropriate structure, layout and technical programming language

	Planning and organising
	
	· Takes responsibility for planning, sequencing and prioritising tasks and own workload

	Problem solving
	1.2,
	· Analyses required outcomes and determines program code using problem-solving techniques

· Uses a formal decision-making process, identifying and evaluating several choices against a limited set of criteria when selecting syntax

· Evaluates decisions in terms of how well they meet stated design specifications

	Technology
	
	· Completes complex tasks using features of digital tools

Do not assume that learners already have these skills; for example, even if you believe they have good writing skills, they may never have written a specific type of report before.

Remember that the learner may not necessarily need all of these skills for a specific task, nor be required to develop them to a high level. This will depend on the nature of the task and the context in which they are working.

Your role is to:

· when planning your assessment program, identify where foundation skills are embedded in the unit of competency and how learners can demonstrate they have acquired the skills

· encourage learners to record in the template that follows the Final Assessment the activities they have performed that demonstrate specific foundation skills; they can do this after completing each chapter in the learner guide.

1.5
Skill sets

Skill sets are single units of competency or combinations of units of competency that link to a licence, regulatory requirement or defined industry need.

Skill sets do not replace qualifications as the foundation for undertaking work in the community sector. Skill sets build on a relevant qualification and enable a qualified worker to move laterally into work areas addressed by the skill set or to broaden their skill base in relation to the services they provide.
1.6
Recognition of prior learning (RPL)

Recognition of prior learning (RPL) is an assessment process that assesses an individual’ s non-formal and informal learning to determine the extent to which that individual has achieved the required learning outcomes, competency outcomes, or standards for entry to, and/or partial or total completion of, a qualification.

To have skills and knowledge formally acknowledged, a learner must supply a range of evidence to verify competency. The trainer then needs to assess this evidence against the criteria for the qualification.

Evidence of competency may include work samples, journals and third-party testimonials. Learners may also need to be observed undertaking set tasks and/or answer set questions.

The full RPL Kit for this qualification is available. The kit consists of four parts:
· Assessor’s Guide

· Candidate’s Guide

· Forms

· Workplace Guide

1.7
Glossary of terms
Wherever possible and appropriate, knowledge should be contextualised to the learner’s workplace. For example, when dealing with organisational policies and procedures, look at the actual policies and procedures of the workplace.
Algorithm: An algorithm is a set of instructions or rules designed to solve a definite problem. The problem can be simple like adding two numbers or a complex one, such as converting a video file from one format to another.

API: Application Programming Interface (API) is a set of rules, routines, and protocols to build software applications. APIs help in communication with third party programs or services, which can be used to build different software. Companies such as Facebook and Twitter actively use APIs to help developers gain easier access to their services.

Argument: Argument or arg is a value that is passed into a command or a function. For example, if SQR is a routine or function that returns the square of a number, then SQR(4) will return 16. Here, the value 4 is the argument. Similarly, if the edit is a function that edits a file, then in edit myfile.txt, ‘myfile.txt’ is the argument.

Array: Arrays are lists or groups of similar types of data values that are grouped. All values in the array are of the same data type and are only differentiated by their position in the array. For example, the age of all students in a class can be an array as they will all be numbers. Similarly, the name of every student in a class will be an array as they will all be of the character data type.

ASCII: American Standard Code for Information Interexchange (ASCII) is a standard that assigns letters, numbers and other characters different slots, available in the 8-bit code. The total number of slots available is 256. The ASCII decimal number is derived from binary, which is assigned to each letter, number, and character. For example, the ‘$’ sign is assigned ASCII decimal number 036, while the lowercase ‘a’ character is assigned 097.
Backend: Backend is another term used for background in programming. A backend task is the one that is performed in the background with the user’s direct interaction. Similarly, a backend developer is a person who designs programs that process data and perform tasks that users don’t directly see.

Boolean: A Boolean expression or Boolean logic is an expression used for creating statements that are either TRUE or FALSE. Boolean expressions use AND, OR, XOR, NOT and NOR operators with conditional statements in programming, search engines, algorithms, and formulas. Boolean expressions are also called comparison expressions, conditional expressions, and relational expressions.

Bug: A bug is a general term used to denote an unexpected error or defect in hardware or software, which causes it to malfunction. Even though bugs are often considered to be insignificant computer glitches, there have been instances where bugs have caused life-threatening conditions and led to major financial losses. This makes it imperative to invest in the process of finding bugs before programs are rolled out for their application. This process
Char: Character (char) is a display unit of information equal to one alphabetic letter or symbol. The value of a char variable could be any one character value, such as ‘a’, ‘1’, ‘$’ and ‘X’. This definition of character relies on the general definition of a character as a sole unit of written language. However, char as an abbreviation is a reserved keyword in languages such as C, C++, C#, and Java.

Class: In Object-Oriented programming, a class refers to a set of related objects with common properties. Classes and the ability to create new classes render OOP a powerful and flexible programming model. For example, there might be a class called shapes which contains objects which are triangles, pentagons, square and circle.

Code: Code or source code is a term used to describe a written set of instructions, written using the protocols of a particular language, such as Java, C or Python. The code can also be used informally to describe text written in a specific language. There are instances where references to the code are made for different languages, such as ‘PHP Code’, ‘HTML Code’, ‘Java Code’ or ‘CSS Code’.

Command-line interface: The command-line interface is a user interface based on the text. The UI is used to view and manage computer files. Command-line interfaces are also called command-line user interfaces, console user interfaces and character user interfaces. During the early 1960s and through the 1970s and 1980s, the command line interface was the primary means of interaction with most computers on terminals.

Compilation: The process of creating an executable program through code written in a compiled programming language is called compilation. Through compiling, the computer can understand and run the program without using the programming software used to create it. A compiler is a program that translates computer programs written using letters, numbers, and characters into a machine language program. An example of a compiler in C++.

Conditionals: Conditionals, conditional statements, and conditional expressions are features of programming language, which help the code make a choice and result in either TRUE or FALSE. These perform different actions depending on the need of the programmer, and multiple conditions can be combined into a single condition, as long as the final value of the condition is either TRUE or FALSE. Examples of conditional statements are ‘IF’, ‘IF-Else’, ‘While’ and ‘Else-If’.

Constants: A constant (also known as Const) is a term used to describe a value that does not change throughout the execution of the program, unlike a variable. Constant cannot be altered and will remain fixed, and a constant can be a number, character, and string.

Data types: A data type is the classification of a particular type of data. We as humans can understand the difference between a name and a number, but the computer cannot. The computer uses special internal codes to distinguish between different types of data it receives and processes. The most common data types include integer type which are numbers, a floating-point number data type which are decimal based numbers, Boolean values which are TRUE or FALSE and character data type which is alphabets.

Declaration: A statement that describes a variable, function or any other identifier is called a declaration. A declaration helps the compiler or interpreter identify the word and understand its meaning, and how the process should be continued. Even though they are important, they are optional and may be used depending on the nature of the programming language.
Endless loop: An endless loop or infinite loop is a continuous repetition of a program snippet, which is everlasting. This occurs majorly due to conditional operators and functions which redirect the code back to the snippet, making it endless.

Exception: A special, unexpected and anomalous condition encountered during the execution of a program is known as an exception. It can also be termed as an error or a condition that alters the way of the program or the microprocessor to a different path. An example of an exception can be the case when a program tries to load a file from the disk, but the file does not exist. The exceptions must be handled and eradicated in the program code to avoid any fatal error.

Expression: An expression is a legal grouping of letters, symbols, and numbers being used to represent the value of one or more variables. Expressions are highly used in a number of programming languages and many other programs, with each having its own set of legal and illegal expressions. Every expression contains one or more operands (objects being manipulated) and operators (symbols representing actions). For example, in the expression A+B-C, A, B and C are operands while + and – are operators.

Framework: Framework in programming is a foundation with a specified level of complexity that may be altered by the programmer, making use of their code. A framework might include different software libraries, APIs, compilers and much more. In simpler terms, a framework provides a favourable environment for a certain type and level of programming for a project. A framework allows the developers to bypass the general necessities and focus on more project-related specifics.
Front-end: The Front-end is the user interface of a computer or any device. For example, any operating system provides users with the ease of navigation. A program or OS is considered good if the UI or Front-end is easy to use and seamless to navigate. Front-end developers are the programmers who design and develop the user interface of a device.

Hardcode: In computer programming, the term hard code or hardcode is used to describe code that is not likely to change. Hardcoded features are built into hardware or software in such a way so that they cannot be modified later. For example, if font size 10 is hardcoded in the software, then it might not change for a long time.
High-level language: A high-level language (HLL) is a programming language that lets the developer write programs irrespective of the nature or type of computer. But if a computer must understand a high-level language, it should be compiled into a machine language. HLLs are considered high-level because they are near human languages and further from machine languages. High-level languages include BASIC, C, C++, Pascal, Prolog, and FORTRAN.

Iteration: Iteration is a single pass through a set of operations that deal with code. One form of iteration in computer programming is via loops. A loop will repeat a certain segment of code until a condition is met and it can proceed further. Each time the computer runs a loop, it is known as an iteration. In simple terms, iteration is the process to repeat a particular snippet of code repeatedly to perform a certain action.

Keywords: Words that are reserved by a programming language or a program as they have special meaning are known as keywords. These keywords are reserved to perform certain tasks, and they can be either commands or parameters. Each programming language has a set of reserved keywords (also known as reserved names) which cannot be used as variable names. Some keywords in ‘C’ language are ‘return’, ‘while’, ‘if’, ‘static’, ‘continue’ and ‘default’.
Loop: A loop is a sequence of instructions that repeat the same process over and over until a condition is met and it receives the order to stop. In a loop, the program asks a question, and if the answer directs the program to perform an action, the action is performed, and the loop runs again, performing the same task. It runs until the answer is such that no action is required and the code can proceed further. Loops are considered one of the most basic and powerful concepts in programming.

Low-level language: A low-level language is a language that is very close to machine language and provides a little abstraction of programming concepts. Low-level languages are closer to the hardware than human languages. The most common examples of low-level languages are assembly and machine code.
Machine language: Also known as machine code, machine language is a lowest-level programming language consisting of binary digits or bits that are read by computers. Machine language is the only language understood by computers. As it consists of only numbers, they cannot be comprehended by humans. Therefore, programmers write code in the high-level language, which is then translated into assembly language or machine language by a compiler, which is then converted to a machine language by an assembler.

Markup language: A markup language is a relatively simple language that consists of easily understood keywords and tags, used to format the overall view of the page and its contents. The language specifies codes for formatting the layout and style of a page, within a text file only. The most common markup languages are Hypertext Markup Language (HTML), Extensible Markup Language (XML) and Standard Generalized Markup Language (SGML).

Package: A package is an organized module of related interfaces and classes. Packages are used to organize classes that belong to the same category or provide related functionality.

Null: Null defines the lack of any value whatsoever. A null character is a programming code, which represents a character with no value, missing value or the end of a character string. If we state $val1= ”” and $val2= “1”, $val1 has a null value.

Objects: An object is a combination of related variables, constants and other data structures which can be selected and manipulated together. An object can include shapes that appear on a screen or the age of students in a school.

Object-Oriented Programming: Object-oriented programming (OOP) is a model defined by programmers that revolve around objects and data rather than ‘actions’ and ‘logic’. In OOP, not only the data type of a data structure is defined, but also the types of functions that can be applied to it. Through this, the data structure becomes an object that consists of both data and functions. Languages that use OOP concepts are Java, Python, C++, and Ruby.
Operand: An operand is a term used to denote the objects which can be manipulated using different operators. In the expression ‘A+F+Q’, ‘A’, ‘F’ and ‘Q’ are operands.

Operator: An operator is a term used to denote the object which can manipulate different operands. In the expression ‘A+F-Q’, ‘+’ and ‘-‘are operators. Examples of different operators are + (addition), -- (decrement), = (equals), != (not equal) and >= (greater than or equal to).
Program: A computer program is termed as an organized collection of instructions, which when executed perform a specific task or function. A program is processed by the central processing unit (CPU) of the computer before it is executed. An example of a program is Microsoft Word, which is a word processing application that enables users to create and edit documents. The browsers that we use are also programs created to help us browse the Internet.

Pointer: In programming, a pointer is a variable that contains the address of a location in the memory. The location is the commencing point of an object, such as an element of the array or an integer. Using pointers improves the performance of the program as it is cheaper in time and space to copy and dereference pointers than to copy and access the data to which the pointer is referring.

Runtime: Runtime or runtime is the period during which a program is, in fact, running on a computer. If an operation occurs at ‘runtime’, it occurred when a program is running or the moment at which the program begins to run. Also known as execution time, the runtime is part of the life cycle of the program, and it denotes the time between when the program begins running and until it is closed by the OS or the user.

Server-side: When procedures and processes are performed on the server, they are deemed server-side. On the other hand, the client-side is at the end of the user. Many programming languages are designed for server-side programmings such as PHP, Perl, and ASP. With the internet boom, almost all websites make use of both server-side and client-side processing. An excellent example of a server-side script is a search engine.

Source data: Source data or data source is the key location from which data is used in the program. The source data can come from a database, spreadsheet or even a hard-coded data location. When a program is executed to display data in a table, the program retrieves the data from its source and then presents it in the arrangement as defined in the code.

Statement: In programming, a statement is a single line of code written legally in a programming language that expresses an action to be carried out. A statement might have internal components of its own, including expressions, operators and functions. An example of a statement is A = A + 5. A program is nothing but a sequence of one or multiple statements. Learn more about statements here

Syntax: Like human languages, programming languages have their own set of rules on how statements can be conveyed. The set of these rules is known as syntax. While a number of programming languages share many features, functions, and capabilities, they differ in syntax. Without the proper use of the syntax, one cannot write an executable program, and a wrong syntax will lead to a plethora of errors.

Token: A token is the smallest individual unit in a program, often referring to a portion of a much larger data piece. For example, if a person’s name is John Thomas Wood, it can be broken into tokens; ‘John’, ‘Thomas’ and ‘Wood’. The programmer can then go on to use only the portion or token they wish to. Tokens are classified into keywords, identifiers, literals, operators, and punctuators.
Variable: A variable is a location that stores temporary data within a program which can be modified, store and display whenever need. For example, if we have an integer variable with a name XYZ and it stores a value 10. If the variable is again initiated with a different value, it will store the new value. So if XYZ=9 is implemented, the variable location of XYZ will discard the value 10 and store the new value, which is 9.

Note the following list of terms and their meanings is specifically for the Python programming language:

	Feature
	Description

	Indentation
	Indentation refers to the spaces at the beginning of a code line

	Comments
	Comments are code lines that will not be executed

	Multi Line Comments
	How to insert comments on multiple lines

	Creating Variables
	Variables are containers for storing data values

	Variable Names
	How to name your variables

	Assign Values to Multiple Variables
	How to assign values to multiple variables

	Output Variables
	Use the print statement to output variables

	String Concatenation
	How to combine strings

	Global Variables
	Global variables are variables that belongs to the global scope

	Built-In Data Types
	Python has a set of built-in data types

	Getting Data Type
	How to get the data type of an object

	Setting Data Type
	How to set the data type of an object

	Numbers
	There are three numeric types in Python

	Int
	The integer number type

	Float
	The floating number type

	Complex
	The complex number type

	Type Conversion
	How to convert from one number type to another

	Random Number
	How to create a random number

	Specify a Variable Type
	How to specify a certain data type for a variable

	String Literals
	How to create string literals

	Assigning a String to a Variable
	How to assign a string value to a variable

	Multiline Strings
	How to create a multi line string

	Strings are Arrays
	Strings in Python are arrays of bytes representing Unicode characters

	Slicing a String
	How to slice a string

	Negative Indexing on a String
	How to use negative indexing when accessing a string

	String Length
	How to get the length of a string

	Check In String
	How to check if a string contains a specified phrase

	Format String
	How to combine two strings

	Escape Characters
	How to use escape characters

	Boolean Values
	True or False

	Evaluate Booleans
	Evaluate a value or statement and return either True or False

	Return Boolean Value
	Functions that return a Boolean value

	Operators
	Use operator to perform operations in Python

	Arithmetic Operators
	Arithmetic operator are used to perform common mathematical operations

	Assignment Operators
	Assignment operators are use to assign values to variables

	Comparison Operators
	Comparison operators are used to compare two values

	Logical Operators
	Logical operators are used to combine conditional statements

	Identity Operators
	Identity operators are used to see if two objects are in fact the same object

	Membership Operators
	Membership operators are used to test is a sequence is present in an object

	Bitwise Operators
	Bitwise operators are used to compare (binary) numbers

	Lists
	A list is an ordered, and changeable, collection

	Access List Items
	How to access items in a list

	Change List Item
	How to change the value of a list item

	Loop Through List Items
	How to loop through the items in a list

	List Comprehension
	How use a list comprehensive

	Check if List Item Exists
	How to check if a specified item is present in a list

	List Length
	How to determine the length of a list

	Add List Items
	How to add items to a list

	Remove List Items
	How to remove list items

	Copy a List
	How to copy a list

	Join Two Lists
	How to join two lists

	Tuple
	A tuple is an ordered, and unchangeable, collection

	Access Tuple Items
	How to access items in a tuple

	Change Tuple Item
	How to change the value of a tuple item

	Loop List Items
	How to loop through the items in a tuple

	Check if Tuple Item Exists
	How to check if a specified item is present in a tuple

	Tuple Length
	How to determine the length of a tuple

	Tuple With One Item
	How to create a tuple with only one item

	Remove Tuple Items
	How to remove tuple items

	Join Two Tuples
	How to join two tuples

	Set
	A set is an unordered, and unchangeable, collection

	Access Set Items
	How to access items in a set

	Add Set Items
	How to add items to a set

	Loop Set Items
	How to loop through the items in a set

	Check if Set Item Exists
	How to check if a item exists

	Set Length
	How to determine the length of a set

	Remove Set Items
	How to remove set items

	Join Two Sets
	How to join two sets

	Dictionary
	A dictionary is an unordered, and changeable, collection

	Access Dictionary Items
	How to access items in a dictionary

	Change Dictionary Item
	How to change the value of a dictionary item

	Loop Dictionary Items
	How to loop through the items in a tuple

	Check if Dictionary Item Exists
	How to check if a specified item is present in a dictionary

	Dictionary Length
	How to determine the length of a dictionary

	Add Dictionary Item
	How to add an item to a dictionary

	Remove Dictionary Items
	How to remove dictionary items

	Copy Dictionary
	How to copy a dictionary

	Nested Dictionaries
	A dictionary within a dictionary

	If Statement
	How to write an if statement

	If Indentation
	If statemnts in Python relies on indentation (whitespace at the beginning of a line)

	Elif
	elif is the same as "else if" in other programming languages

	Else
	How to write an if...else statement

	Shorthand If
	How to write an if statement in one line

	Shorthand If Else
	How to write an if...else statement in one line

	If AND
	Use the and keyword to combine if statements

	If OR
	Use the or keyword to combine if statements

	Nested If
	How to write an if statement inside an if statement

	The pass Keyword in If
	Use the pass keyword inside empty if statements

	While
	How to write a while loop

	While Break
	How to break a while loop

	While Continue
	How to stop the current iteration and continue wit the next

	While Else
	How to use an else statement in a while loop

	For
	How to write a for loop

	Loop Through a String
	How to loop through a string

	For Break
	How to break a for loop

	For Continue
	How to stop the current iteration and continue wit the next

	Looping Through a rangee
	How to loop through a range of values

	For Else
	How to use an else statement in a for loop

	Nested Loops
	How to write a loop inside a loop

	For pass
	Use the pass keyword inside empty for loops

	Function
	How to create a function in Python

	Call a Function
	How to call a function in Python

	Function Arguments
	How to use arguments in a function

	*args
	To deal with an unknown number of arguments in a function, use the * symbol before the parameter name

	Keyword Arguments
	How to use keyword arguments in a function

	**kwargs
	To deal with an unknown number of keyword arguments in a function, use the * symbol before the parameter name

	Default Parameter Value
	How to use a default parameter value

	Passing a List as an Argument
	How to pass a list as an argument

	Function Return Value
	How to return a value from a function

	The pass Statement i Functions
	Use the pass statement in empty functions

	Function Recursion
	Functions that can call itself is called recursive functions

	Lambda Function
	How to create anonymous functions in Python

	Why Use Lambda Functions
	Learn when to use a lambda function or not

	Array
	Lists can be used as Arrays

	What is an Array
	Arrays are variables that can hold more than one value

	Access Arrays
	How to access array items

	Array Length
	How to get the length of an array

	Looping Array Elements
	How to loop through array elements

	Add Array Element
	How to add elements from an array

	Remove Array Element
	How to remove elements from an array

	Array Methods
	Python has a set of Array/Lists methods

	Class
	A class is like an object constructor

	Create Class
	How to create a class

	The Class __init__() Function
	The __init__() function is executed when the class is initiated

	Object Methods
	Methods in objects are functions that belongs to the object

	self
	The self parameter refers to the current instance of the class

	Modify Object Properties
	How to modify properties of an object

	Delete Object Properties
	How to modify properties of an object

	Delete Object
	How to delete an object

	Class pass Statement
	Use the pass statement in empty classes

	Create Parent Class
	How to create a parent class

	Create Child Class
	How to create a child class

	Create the __init__() Function
	How to create the __init__() function

	super Function
	The super() function make the child class inherit the parent class

	Add Class Properties
	How to add a property to a class

	Add Class Methods
	How to add a method to a class

	Iterators
	An iterator is an object that contains a countable number of values

	Iterator vs Iterable
	What is the difference between an iterator and an iterable

	Loop Through an Iterator
	How to loop through the elements of an iterator

	Create an Iterator
	How to create an iterator

	StopIteration
	How to stop an iterator

	Global Scope
	When does a variable belong to the global scope?

	Global Keyword
	The global keyword makes the variable global

	Create a Module
	How to create a module

	Variables in Modules
	How to use variables in a module

	Renaming a Module
	How to rename a module

	Built-in Modules
	How to import built-in modules

	Using the dir() Function
	List all variable names and function names in a module

	Import From Module
	How to import only parts from a module

	Datetime Module
	How to work with dates in Python

	Date Output
	How to output a date

	Create a Date Object
	How to create a date object

	The strftime Method
	How to format a date object into a readable string

	Date Format Codes
	The datetime module has a set of legal format codes

	JSON
	How to work with JSON in Python

	Parse JSON
	How to parse JSON code in Python

	Convert into JSON
	How to convert a Python object in to JSON

	Format JSON
	How to format JSON output with indentations and line breaks

	Sort JSON
	How to sort JSON

	RegEx Module
	How to import the regex module

	RegEx Functions
	The re module has a set of functions

	Metacharacters in RegEx
	Metacharacters are characters with a special meaning

	RegEx Special Sequences
	A backslash followed by a a character has a special meaning

	RegEx Sets
	A set is a set of characters inside a pair of square brackets with a special meaning

	RegEx Match Object
	The Match Object is an object containing information about the search and the result

	Install PIP
	How to install PIP

	PIP Packages
	How to download and install a package with PIP

	PIP Remove Package
	How to remove a package with PIP

	Error Handling
	How to handle errors in Python

	Handle Many Exceptions
	How to handle more than one exception

	Try Else
	How to use the else keyword in a try statement

	Try Finally
	How to use the finally keyword in a try statement

	raise
	How to raise an exception in Python

Section 2 - Assessment tools
Assessment is all about collecting evidence and making decisions as to whether a learner has achieved competency. Assessment confirms that the learner can perform to the expected workplace standard, as outlined in the units of competency.

This section contains the summative assessment tools that are to be used in assessing this unit of competency. The assessment tools have also been mapped against the requirements of unit assessment; these may be reviewed in the TEIA document ICT30120 Mapping Guide. Assessors can use this mapping information to complete required assessment records.

It is an important responsibility of assessors to complete the assessment records themselves. This ensures all additional assessment activities deemed appropriate or required by the assessor, in addition to those within this document, are included in these records.

Section Two contains the following information:

2.1
Summative assessment

2.2
Solutions – general guidance

2.3
Solutions – summative assessment

2.4
Evidence of competency

2.5
Assessment records
2.1
Summative assessment

Separate each assessment tool as required in the assessment process.
Task 1

The completed forms from the programming task must be submitted to the assessor as a portfolio. This portfolio will contain the following:

Activity 1A:
Gather all information required to complete the task – Arrange a meeting form and Performance Checklist 1

Activity 1B:
Meeting minutes - Meeting minutes template

Activity 2:
Performance Checklist 2

Activity 3:
Test Case form and Performance Checklist 3

Activity 4:
Evaluation and Feedback Form and Performance Checklist 4
Task 2

Twelve questions in a short answer, written test.

Question 1

a.
Define data types, operators and expressions used in Python programming language. Explain each with examples in 50-100 words.

b.
What is a variable and variable scope? Explain with an example of variable and variable scope in Python programming language using 100-200 words.

Question 2

a.
What is a basic language syntax? Answer using 20-40 words.

b.
Identify five (5) basic language syntax rules of Python?

Question 3

a.
Explain each of the following programming concepts using 20-40 words:

•
Sequencing

•
Selection

•
Iteration

b.
What is a term like iteration constructs in programming languages? The answer must only include the term used; no further explanation required for this question.

Question 4

a.
What are the three (3) requirements to test a small size software application?

b.
What are the different types of testing? Identify three (3) types of testing.

c.
What are three (3) considerations for the development of small-sized applications?

Question 5

a.
What is the difference between programming standards and programming guidelines? Answer using 30-60 words.

b.
What is the significance of adopting programming practices and coding standards? Answer using 30-60 words.

Question 6

a.
How do you write comments in Python? Answer using 20-40 words.

b.
Can you comment through multiple lines in Python? Answer using 20-40 words.

c.
Why should we not use triple or double quote comments (""") by default as commenting techniques in Python language? Answer using 30-50 words.

Question 7

a.
Explain the debugging techniques used in the Python programming language using 30-60 words.

b.
What is debug programming? Answer using 30-60 words.

Question 8

a.
Identify four (4) application testing methods.

b.
What is an application testing process? Answer using 15-30 words.

Question 9

a.
What are the basic data structures of the Python programming language? Answer using 20-40 words.

b.
How is Python good for data structures? Answer using 20-40 words.

Question 10

a.
Explain why most of the power of a programming language is in its libraries? Answer using 30-60 words.

b.
How can you import a library module in the Python language? Discuss with an example using 20-40 words.

Question 11

a.
Explain why sequential access algorithms are faster than the random-access algorithms in reading and writing text files. Answer using 30-60 words.

b.
What are the disadvantages of sequential data access? Answer using 30-60 words.

Question 12

a.
Why should you present your application to the required personnel before finalising and releasing it to them? Answer using 20-40 words.

b.
Identify two (2) principles of good application usability you should consider presenting and obtain feedback on your application to the required personnel?
2.2
Solutions - General guidance
Assessors should review the solutions provided and adapt and/or contextualise them (and assessment activities themselves where necessary) to suit the training and assessment context as part of their moderation activities. This will ensure consistency of assessment.
The solutions to assessment activities serve as a reliable guide to the type of information that should be included in the assessment candidate’s response. Refer to the assessment activities when assessing learner responses or evaluating assessment evidence. The answers provided by the assessment candidate will vary due to several factors, including the:

· candidate’ s own experiences

· candidate’ s workplace experiences

· training situations and strategies presented by the trainer

· interpretation of the assessment activity by the assessment candidate/assessor

· type of organisation, work practices, processes and systems encountered by the candidate.

The nature and variety of the tasks presented means that in some cases there will be numerous correct responses, and the solutions provided cannot cater for all contexts and eventualities.

In general terms:

· For questions with a single answer, this guide provides the correct answer.

· For questions that do not have a single answer, it is understood that answers will vary within certain parameters.

· For questions where the candidate must list a certain number of items, the RTO has provided a more comprehensive listing from which candidate responses may be drawn. This list may not in all cases be definitive, and assessors should account for other possible correct responses.

· For activities that involve responding to a case study, the RTO has provided an example of how the candidate may respond. Depending on the question, the terminology used will indicate either what the candidate should have included in their response or may have included. However, different phrasing may be used by the candidate, or different responses that may be equally correct are also possible.
· For activities that take place in the workplace or involve workplace documentation, the RTO can only provide an example response. Assessors should consider whether the candidate has achieved the intent of the activity within the candidate’s workplace context.

· For activities that involve writing reports or completing documentation provided, the RTO can only provide an example response. Assessors should again consider whether the candidate’s response is appropriate to the task within the context of the candidate’s training and/or workplace.

2.3
Solutions – Summative assessment
Assessor judgement is required throughout the practical activity.
Programming Task Portfolio
The following elements form a portfolio that must be submitted by the candidate as part of the assessment.
Form 1: Arrange a meeting

	Application task requirements

	Write a brief of what is required to be completed and identify the purpose of the meeting (30-50 words)
This response clearly needs to outline the purpose of the meeting.
Expectations and requirements (30-50 words)
This response clearly needs to outline expectations and requirements to complete the task.

	Meeting requirements

	Full details of the meeting must be provided.

Who is participating?

Why are they participating? (10-20 words)

Where meeting will occur:

When the meeting occurs:

Note: Provide evidence of arranging the meeting, confirming the availability of the participants and space

	Meeting agenda

	Meeting agenda items:

The next steps to complete the task:

Note: Provide evidence of seeking input from the participants regarding the meeting.

Form 2: Meeting minutes template

All parts of the form must be completed and reflect the programming project undertaken.

	Program/Area:
	Program/area with which the project is affiliated is listed.

	Meeting Purpose:
	Name or purpose of meeting is detailed.

	Meeting Date:
	Appropriate date entered.

	Meeting Time:
	Appropriate time entered.

	Meeting Location:
	Appropriate location entered.

	Meeting Facilitator:
	Name of person facilitating/supervising project entered.

	Attendees:
	Names of persons attending the meeting entered.

	Decisions Made: (What, Why, Impacts)

	Descriptions and details of the decisions made are provided here – ideally the reasoning behind the decision should also be inserted.

	Discussion: (Items/Knowledge Shared)

	Specific discussion points that are essential to the project must be listed here, e.g. the specifications.

	Miscellaneous Items:

	Specific points of interest that may impact on the project must be listed here, e.g. the specifications.

Form: Test case

The form for testing of the programming must also be completed and included in the portfolio.
	Project Name:

	Test Case

	Test Case ID:
	Test Designed by: <Name>

	Test Priority (Low/Medium/High):
	Test Designed date: <Date>

	Module Name:
	Test Executed by: <Name>

	Test Title:
	Test Execution date: <Date>

	Description:
	

	Pre-conditions: User has valid username and password

Dependencies:

	Step
	Test Steps
	Test Data
	Expected Result
	Actual Result
	Status (Pass/Fail)
	Notes

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	Post-conditions

Evaluation and feedback form

	Feedback topic
	Feedback provided
	Comments

	Algorithm and flow chart diagrams
	
	

	Application to meet program specification
	
	

	Write a program in easy and efficient way
	
	

	Create test data and check the program if it is error free.
	
	

Final sign off authority:

Performance Checklists

Performance Checklists for Task 1, Task 2, Task 3 and Task 4 must be included in the portfolio.

Task 1 – Part A
While candidates’ responses may vary, these responses must contain the core information as detailed below:

Question 1

a. Define data types, operators and expressions used in Python programming language. Explain each with examples in 50-100 words.
The response must be the correct work length and the following main ides must be present:

Data types:

The data type specifies the size and type of values that can be stored in an identifier. The Python language is rich in its data types. Different data types allow you to select the type appropriate to the needs of the application.

Data types in Python are classified into the following types:

Text Type:

str

Numeric Types:
int, float, complex

Sequence Types:
list, tuple, range

Mapping Type:
dict

Set Types:

set, frozenset

Boolean Type:
bool

Binary Types:

bytes, bytearray, memoryview

Operators:

Operators are the constructs which can manipulate the value of operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator.

Types of Operator

Python language supports the following types of operators.

• Arithmetic Operators

• Comparison (Relational) Operators

• Assignment Operators

• Logical Operators

• Bitwise Operators

• Membership Operators

• Identity Operators

Expressions:

A statement is a complete line of code that performs some action, while an expression is any section of the code that evaluates to a value.

Example (save as expression.py):

length = 5

breadth = 2

area = length * breadth

print('Area is', area)

print('Perimeter is', 2 * (length + breadth))

Output:

$ python expression.py

Area is 10

Perimeter is 14
b. What is a variable and variable scope? Explain with an example of variable and variable scope in Python programming language using 100-200 words.

A Python variable is a reserved memory location to store values - a variable in a python program gives data to the computer for processing. Every value in Python has a datatype. Different data types in Python are Numbers, List, Tuple, Strings, Dictionary, etc. Variables can be declared by any name or even alphabets like a, aa, abc, etc.

A variable scope in Python is that part of the code where it is visible. To refer to it, you don't need to use any prefixes.The duration for which a variable is alive is called its 'lifetime'.
Question 2

a. What is a basic language syntax? Answer using 20-40 words.

The syntax of a computer language is the set of rules that defines the combinations of symbols that are considered to be correctly structured statements or expressions in that language. Syntax, therefore, refers to the form of the code, and is contrasted with semantics – the meaning.
b. Identify five (5) basic language syntax rules of Python?

Any of the following may be used:
· Case sensitivity
· Path specification
· Command terminator
· Quotations
· Line continuation
· Code indentation
Examples:
Case sensitivity: Python is case sensitive. A variable with name yoyostudytonight is not same as yoYoStudytonight.
Path specification: For path specification, Python uses forward slashes. If you are working with a file, the default path for the file in case of Windows OS will have backward slashes, which you will have to convert to forward slashes to make them work in your python script. For window's path C:\folderA\folderB relative python program path should be C:/folderA/folderB

Command terminator: In Python, there is no command terminator, which means no semicolon ; or anything. So to print something as output, all you have to do is:

print ("Hello, World!"). In one line only a single executable statement should be written and the line change act as command terminator in Python. To write two separate executable statements in a single line, you should use a semicolon ; to separate the commands. For example, print ("Hello, World!") ; print ("This is second line")

Quotations: In Python, you can use single quotes '', double quotes "" and even triple quotes ''' """ to represent string literals.
word = 'word'

sentence = "This is a one line sentence."

para = """This is a paragraph

 which has multiple lines"""

Question 3

a. Explain each of the following programming concepts using 20-40 words:

•
Sequencing

•
Selection

•
Iteration
Sequencing: The computer should run the code in order, one line at a time from the top to the bottom of your program.

Selection: Run the code only if a condition is met; otherwise, the computer should ignore a few lines and jump over them.

Iteration: A set of instructions or structures are repeated in a sequence a specified number of times or until a condition is met.
b. What is a term like iteration constructs in programming languages? The answer must only include the term used; no further explanation required for this question.
Repetition
Question 4

a. What are the three (3) requirements to test a small size software application?
The three (3) requirements to test a small size software application may include:

· Having comprehensive testing criteria

· functionality testing and code review

· Unit testing.
b. What are the different types of testing? Identify three (3) types of testing.
Any three of the following testing types may be selected:

· Unit Testing.

· Integration Testing.

· System Testing.

· Sanity Testing.

· Smoke Testing.

· Interface Testing.

· Regression Testing.

· Beta/Acceptance Testing.
c. What are three (3) considerations for the development of small-sized applications?

Any three of the following considerations may be provided:
· Loading times
· Call to Action (CTAs)
· Navigation
· Functionality
· Clear design
Question 5

a. What is the difference between programming standards and programming guidelines? Answer using 30-60 words.

All functions that encounter an error condition should either return a 0 or 1 for simplifying the debugging. Programming guidelines give some general suggestions regarding the coding style that to be followed for the betterment of understandability and readability of the code.
b. What is the significance of adopting programming practices and coding standards? Answer using 30-60 words.

Coding standards help in the development of software programs that are less complex and thereby reduce the errors. If the coding standards are followed, the code is consistent and can be easily maintained. This is because anyone can understand it and can modify it at any point in time.
Question 6

a. How do you write comments in Python? Answer using 20-40 words.

A comment in Python starts with the hash character, #, and extends to the end of the physical line. A hash character within a string value is not seen as a comment, though.
b. Can you comment through multiple lines in Python? Answer using 20-40 words.

No, unlike other programming languages, Python doesn't support multi-line comment blocks out of the box.
c. Why should we not use triple or double quote comments (""") by default as commenting techniques in Python language? Answer using 30-50 words.

Double and triple quotes are used for special purposes such as documentation in Python for other developers to read and review the code, therefore, these commenting techniques should not be used when coding in Python.
Question 7

a. Explain the debugging techniques used in the Python programming language using 30-60 words.

Debugging techniques:

· print() statement: This is the simplest way of knowing what's exactly happening so you can check what has been executed.

· logging: This is like a print statement but with more contextual information so you can understand it fully.

· pdb debugger: This is a commonly used debugging technique.
b. What is debug programming? Answer using 30-60 words.

Debugging is the process of detecting and removing of existing and potential errors (also called as 'bugs') in a software code that can cause it to behave unexpectedly or crash. To prevent incorrect operation of a software or system, debugging is used to find and resolve bugs or defects.

Question 8

a. Identify four (4) application testing methods.

Four (4) application testing methods are:

· Unit testing

· Integration testing

· System testing

· Acceptance testing.
b. What is an application testing process? Answer using 15-30 words.

Application testing is a process through which the functionality, usability and consistency of the entire application are tested.
Question 9

a. What are the basic data structures of the Python programming language? Answer using 20-40 words.

The built-in data structures are: lists, tuples, dictionaries, strings, sets and frozen sets. Lists, strings and tuples are ordered sequences of objects. Unlike strings that contain only characters, lists and tuples can contain any type of objects.

b. How is Python good for data structures? Answer using 20-40 words.

Python is a high-level programming language and therefore makes it efficient to implement Data Structures and Algorithms.

Question 10

a. Explain why most of the power of a programming language is in its libraries? Answer using 30-60 words.

A library is a collection of files (called modules) that contains functions for use by other programs. A library may also contain data values (e.g., numerical constants) and other things. A library’s contents are supposed to be related, but there’s no way to enforce that. The Python standard library is an extensive suite of modules that comes with Python itself. Many additional libraries are available from PyPI (the Python Package Index).
b. How can you import a library module in the Python language? Discuss with an example using 20-40 words.

Use Import to load a library module into a program’s memory. Then refer to things from the module as module_name.thing_name. Python uses . to mean “part of”.
Example: Using math, one of the modules in the standard library:

import math

print('pi is', math.pi)

print('cos(pi) is', math.cos(math.pi))
Question 11

a. Explain why sequential access algorithms are faster than the random-access algorithms in reading and writing text files. Answer using 30-60 words.

A sequential read algorithm is theoretically faster than a random read algorithm simply because of the way modern hardware operates. Because random access algorithms require more seek operations than sequential access algorithms, it’s easy to see which process outperforms the other in terms of throughput.
b. What are the disadvantages of sequential data access? Answer using 30-60 words.

Slow retrieval of data. Example: locating a specific record contained within a file that holds thousands of records is difficult when using sequential access. Even the process of pulling multiple records within a file, either for updating, deletion or other purposes altogether, can be slowed down when using a sequential method of data access.
Question 12

a. Why should you present your application to the required personnel before finalising and releasing it to them? Answer using 20-40 words.

The required personnel will ultimately review and check the application according to the set requirements, standards and conditions. They will also provide necessary feedback and helpful suggestions to make the required changes to the application.
b. Identify two (2) principles of good application usability you should consider presenting and obtaining feedback on your application to the required personnel?
Two (2) principles can be selected from the list below or similar:

· availability and accessibility

· clarity

· learnability

· credibility

· relevancy
2.4
Evidence of competency

Evidence is information gathered that provides proof of competency. While evidence must be sufficient, trainers and assessors must focus on the quality of evidence rather than the quantity of evidence.

Rules of evidence

There are four rules of evidence that guide the collection of evidence. Evidence must be:

· valid – it must cover the performance evidence and knowledge evidence
· sufficient – it must be enough to satisfy the competency

· current – skills and knowledge must be up to date

· authentic – it must be the learner’s own work and supporting documents must be genuine.

Principles of assessment

High quality assessments must be:

· fair – assessments are not discriminatory and do not disadvantage the candidate

· flexible – assessments meet the candidate’ s needs and include an appropriate range of assessment methods

· valid – assessments assess the unit/s of competency performance evidence and knowledge evidence
· reliable – there is a common interpretation of the assessments.

Types of evidence

Types of evidence that can be collected, sighted or validated include:

· work records such as position descriptions, performance reviews, products developed and processes followed and/or implemented

· third-party reports from customers, managers and/or supervisors

· training records and other recognised qualifications

· skills and knowledge assessments

· volunteer work.

Gathering evidence

Evidence can be gathered through:

· real work/real-time activities through observation and third-party reports

· structured activities.

Evidence can also be gathered through:

· formative assessments: where assessment is progressive throughout the learning process and validated along the way by the trainer – also known as assessment for learning

· summative assessment: where assessment is an exercise or simulation at the end of the learning process – also known as assessment of learning.

Evaluating evidence

The following steps may help you evaluate evidence.

	Step 1: Evidence is gathered.
	
	
	
	

	Step 2: Rules of evidence are applied – evidence is valid, sufficient, current and authentic.
	
	
	

	Step 3: Evidence meets the full requirements of the unit/s of competency.
	
	

	Step 4: The assessment process is valid, reliable, fair and flexible.
	

	Step 5: The trainer or assessor makes a straightforward and informed judgment about the candidate and completes assessment records.

2.5
Assessment records

Learners must provide evidence of how they have complied with the performance and knowledge evidence requirements outlined in the unit of competency. These requirements should be assessed in the workplace or in a simulated workplace; assessment conditions are specified in each unit of competency.

You can use the following assessment forms to record the learner’s evidence of competency:
· The Assessment Instructions Checklist helps the trainer/assessor provide clear instructions to the candidate as to which assessment activities to complete.

· The Pre-Assessment Checklist helps the trainer determine if the learner is ready for assessment.

· The Self-Assessment Record allows the learner to assess their own abilities against the requirements of the unit of competency.

· The Performance Evidence Checklist facilitates the observation process; it allows trainers to identify skill gaps and provide useful feedback to learners.

· The Knowledge Evidence Checklist can be used to record the learner’s understanding of the knowledge evidence; it allows trainers to identify knowledge gaps and to provide useful feedback to learners.

· The Portfolio of Evidence Checklist helps the trainer annotate or detail aspects of the learner’s portfolio of evidence.

· The Workplace Assessment Checklist can be used by the learner’s supervisor to show workplace-based evidence of competence.
· The Observation Checklist/Third Party Report records the candidate’s performance in the workplace.

· The Record of Assessment form is used to summarise the outcomes of the assessment process in this unit.

· The Request for Qualification Issue is used by the assessor to inform the RTO authorities that the process for issuing a Statement of Attainment or Qualification may commence.

Assessment instructions – ICTPRG302
	Candidate’ s name:      
Unit of competency: ICTPRG302 Apply introductory programming techniques
Trainer/assessor:      
Date:      

	The candidate must complete the following assessment activities, provided by the trainer/assessor:

	
	Y/N
	Whole activity/ specific questions

	Candidate Self-assessment
	
	     

	Final assessment -
	
	     

	Final assessment -
	
	     

	Final assessment -
	
	     

	Portfolio
	
	     

	Workplace Assessment
	
	     

	Workplace Assessment (video)
	
	     

	Competency Conversation (using RPL)
	
	     

	Workplace Observation
	
	     

	Third Party Report
	
	     

	Other assessment activities as detailed below:
	
	

	     
	
	     

	     
	
	     

	     
	
	

	Candidate signature:
	     
	Date:
	     

	Assessor/trainer signature:
	     
	Date:
	     

Pre-assessment checklist – ICTPRG302
	Candidate’ s name:      
Unit of competency: ICTPRG302 Apply introductory programming techniques
Trainer/assessor:      

Date:      

	Checklist

	Talked to the candidate about the purpose of the assessment
	 Yes
 No

	Explained the unit of competency
	 Yes
 No

	Discussed the various methods of assessment
	 Yes
 No

	In consultation with trainer/assessor, the following assessment methods will be used:

	 Question/answer
	 Observation/Demonstration
	 Log, Journal, Diary

	 Case study
	 Portfolio, work samples
	 Third Party Reports

	 Reports
	
	

	Assessment environment and process

When will assessment occur?      
Where will assessment occur?      
Special needs (if any)      
How many workplace visits are required (if appropriate)?      
What resources are required?      

	Information has been provided on the following:

	 Confidentiality procedures
	 Re-assessment policy
	 Appeals process

	 Regulatory information
	 Authenticity of candidate’ s work

	Discussed self-assessment process
	 Yes
 No

	Summarised information and allowed candidate to ask questions
	 Yes
 No

	Candidate signature:
	     
	Date:
	     

	Assessor/trainer signature:
	     
	Date:
	     

Self-assessment record – ICTPRG302
	Candidate’ s name:      
	Part D

	Unit of competency: ICTPRG302 Apply introductory programming techniques
Trainer/assessor:      
Date:      

	Tasks
	I do the workplace task…
	Candidate’s comments

	
	…very well
I’m sure I can do the task
	…quite well
I think I can do the task
	…no, or not well
I don’t (or can’t) do the task
	

	I can clarify task with required personnel.
	
	
	
	     

	I can identify design specifications, programming standards and guidelines according to task requirements.
	
	
	
	     

	I can apply basic language syntax rules.
	
	
	
	     

	I can create code using language data types, operators and expressions.
	
	
	
	     

	I can apply variables and variable scope.
	
	
	
	     

	I can use program library functions.
	
	
	
	     

	I can clarify meaning of code using commenting techniques.
	
	
	
	     

	I can apply language syntax in sequence, selection and iteration constructs.
	
	
	
	     

	I can create expressions in selection and iteration constructs using logical operators.
	
	
	
	     

	I can develop algorithms using sequence, selection and iteration constructs.
	
	
	
	     

	I can create and use data structures.
	
	
	
	

	I can code standard sequential access algorithms used in reading and writing text files.
	
	
	
	

	I can apply string manipulation.
	
	
	
	

	I can examine variable contents and use debugging techniques to detect and correct errors.
	
	
	
	

	I can create and conduct simple tests and confirm code meets design specification.
	
	
	
	

	I can document actions carried out and results of tests performed.
	
	
	
	

	I can design an algorithm in response to basic program specifications.
	
	
	
	

	I can develop application to meet program specification.
	
	
	
	

	I can confirm application meets initial specifications.
	
	
	
	

	I can present application to required personnel.
	
	
	
	

	I can obtain feedback and sign off from required personnel.
	
	
	
	

	Candidate signature:
	     
	Date:
	     

Performance evidence checklist – ICTPRG302
	Candidate’s name:      

Unit of competency: ICTPRG302 Apply introductory programming techniques
Trainer/assessor:      

Date:      

	Did the candidate demonstrate the following performance evidence?
	Yes
	No
	N/A

	· Design and build one simple application according to programming standards and program specifications.
	
	
	

	During the above, the candidate must:
	
	
	

	· Apply programming language syntax, sequence, selection and iteration constructs.
	
	
	

	· Document changes and tests performed.
	
	
	

	· Review code according to feedback obtained during design and development of application.
	
	
	

	In the assessment/s of the candidate’s performance evidence, did they demonstrate the four dimensions of competency?

	Task skills
	
	
	

	Task management skills
	
	
	

	Contingency management skills
	
	
	

	Job/role environment skills
	
	
	

	The candidate’ s performance was:
	 Not satisfactory
	 Satisfactory

	Feedback to candidate:

     

	Candidate signature:
	     
	Date:
	     

	Assessor/trainer signature:
	     
	Date:
	     

Knowledge evidence checklist – ICTPRG302
	Candidate’s name:      

Unit of competency: ICTPRG302 Apply introductory programming techniques Trainer/assessor:      
Date:      

	Did the candidate show their knowledge of the following?
	Yes
	No
	N/A

	· Language data types, operators, expressions and variables
	
	
	

	· Basic language syntax rules
	
	
	

	· Sequence, selection and iteration constructs
	
	
	

	· The development of small-sized applications
	
	
	

	· Industry programming standards and guidelines
	
	
	

	· Commenting techniques
	
	
	

	· Debugging techniques
	
	
	

	· Application testing methods
	
	
	

	· Basic data structures
	
	
	

	· Language data types, operators, expressions and variables
	
	
	

	· Basic language syntax rules
	
	
	

	· Sequence, selection and iteration constructs
	
	
	

	In the assessment/s of the candidate’s knowledge evidence, did they demonstrate the four dimensions of competency?

	Task skills
	
	
	

	Task management skills
	
	
	

	Contingency management skills
	
	
	

	Job/role environment skills
	
	
	

	The candidate’ s performance was:
	 Not satisfactory
	 Satisfactory

	Feedback to candidate:

     

	Candidate signature:
	     
	Date:
	     

	Assessor/trainer signature:
	     
	Date:
	     

Portfolio of evidence checklist – ICTPRG302
	Candidate’s name:      
	Part E

	Unit of competency: ICTPRG302 Apply introductory programming techniques
Trainer/assessor:      

Date:      

	Description of evidence to
include in portfolio
	Assessor’ s comments
	Tick*

	
	
	V
	S
	C
	A

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	     
	     
	
	
	
	

	Candidate signature:
	     
	Date:
	     

	Assessor/trainer signature:
	     
	Date:
	     

* V = Valid; S = Sufficient: C = Current; A = Authentic
Workplace assessment checklist – ICTPRG302
	Candidate’s name:      
	Part F

	Unit of competency: ICTPRG302 Apply introductory programming techniques
Trainer/assessor:      

Date:      

	Name of organisation:      
Address:      
Telephone:      
Email:      
Workplace supervisor:      

	Performance evidence

Candidate demonstrates the ability to:
	Evidence provided/observation comments

	
	Design and build one simple application according to programming standards and program specifications.
	     

	
	During the above, the candidate must:
	

	
	Apply programming language syntax, sequence, selection and iteration constructs.
	     

	
	Document changes and tests performed.
	     

	
	Review code according to feedback obtained during design and development of application.
	     

	Knowledge evidence
Candidate knows and understands:
	

	
	Language data types, operators, expressions and variables
	     

	
	Basic language syntax rules
	     

	
	Sequence, selection and iteration constructs
	     

	
	The development of small-sized applications
	     

	
	Industry programming standards and guidelines
	     

	
	Commenting techniques
	     

	
	Debugging techniques
	     

	
	Application testing methods
	     

	
	Basic data structures
	     

	Workplace supervisor’ s signature:
	     
	Date:
	     

	TEIA Ltd

	Observation Checklist/Third Party Report

	This is a confidential report. It is for the perusal of the supervisor, the candidate, and the assessor. (Part G)

	Name of candidate:
	     

	Units of competency:
	 ICTPRG302 Apply introductory programming techniques

As part of the assessment for the units of competency above we are seeking evidence to support a judgement about the above candidate’s competence. This report may be completed as either an Assessor Observation Checklist or a Third-Party Report where the candidate has access to a suitable work environment. Multiple reports may be completed where a single person is unable to verify all elements.

Note that assessors may also use this document to record and confirm competency in routine tasks associated with a learning program over an extended period of time, i.e. accumulated evidence.

	This report is being completed as:
	 Assessor Observation

 Third Party Report

	Name of Supervisor:
	     

	Position of Supervisor:
	     

	Workplace:
	     

	Address:
	     

	Telephone:
	     

	Email:
	     

	Has the purpose of the candidate's assessment been explained to you?
	 Yes No

	Are you aware that the candidate will see a copy of this form?
	 Yes No

	Are you willing to be contacted should further verification of this statement be required?
	 Yes No

	What is your relationship to the candidate?
	     

	How long have you worked with the person being assessed?
	     

	How closely do you work with the candidate in the area being assessed?
	     

	What is your experience and/or qualification(s) in the area being assessed? (Include teaching qualifications if relevant.)
	     

	Does the candidate consistently perform the following workplace activities?
	Yes
	No

	Can the candidate design and build one simple application according to programming standards and program specifications?
	
	

	During the above, the candidate must:
	
	

	Apply programming language syntax, sequence, selection and iteration constructs.
	
	

	Document changes and tests performed.
	
	

	Review code according to feedback obtained during design and development of application.
	
	

	Task 1
· Using a programming language in common use within your workplace, develop a short application that meets a business need of the workplace.
	
	

	Comment (if relevant):
     

	Task 2
·      
	
	

	Comment (if relevant):
     

	Comment (if relevant):
     

	Does the candidate:
	Yes
	No

	· perform job tasks to industry standards?
	
	

	· manage job tasks effectively?
	
	

	· implement safe working practices?
	
	

	· solve problems on-the-job?
	
	

	· work well with others?
	
	

	· adapt to new tasks?
	
	

	· cope with unusual or non-routine situations?
	
	

	·      
	
	

	Overall, do you believe the candidate performs to the standard required by the units of competency on a consistent basis?
	 No Yes

	Identify any further training in this area that the candidate may require:

	     

	Comments:

	     

	Supervisor’s Signature:
	Date:      

	Record of Assessment

 ICTPRG302 Apply introductory programming techniques

	Name of candidate
	     

	Name of assessor
	     

	Use the checklist below as a basis for judging whether the candidate’s document and supporting evidence meets the required competency standard.

	
	Yes No

	1. Establish application task
	

	1.1
Clarify task with required personnel
1.2
Identify design specifications, programming standards and guidelines according to task requirements
	

	
	

	2. Apply language syntax and layout
	

	2.1
Apply basic language syntax rules
2.2
Create code using language data types, operators and expressions
2.3
Apply variables and variable scope
2.4 Use program library functions

2.5 Clarify meaning of code using commenting techniques
	

	
	

	
	

	3. Apply control structures
	

	3.1
Apply language syntax in sequence, selection, and iteration constructs
3.2
Create expressions in selection and iteration constructs using logical operators

	

	4. Code using standard programming algorithms
	

	4.1 Develop algorithms using sequence, selection and iteration constructs
4.2 Create and use data structures
4.3 Code standard sequential access algorithms used in reading and writing text files
4.4 Apply string manipulation
	

	5. Test code
	

	5.1 Examine variable contents and use debugging techniques to detect and correct errors

5.2 Create and conduct simple tests and confirm code meets design specification
5.3 Document actions carried out and results of tests performed
	

	6. Create a simple application and seek feedback
	

	6.1 Design an algorithm in response to basic program specifications

6.2 Develop application to meet program specification
6.3 Confirm application meets initial specifications
6.4 Present application to required personnel
6.5 Obtain feedback and sign off from required personnel
	

	Does the candidate meet all the unit of competency’s requirements?

	
	Yes
	No

	· Critical evidence requirements met
	

	· Underpinning knowledge and understanding demonstrated
	

	· Key competencies / Employability skills demonstrated at appropriate level
	

	· Sufficiency of evidence
	

	

	Evidence provided for this unit of competency is…
	Valid
	Authentic
	Current

	
	
	
	

	Candidate is:

	Competent
	
	Not competent currently
	

	Withdrawn after participation
	
	Withdrawn without participation
	

	Not seeking assessment
	
	
	

	Signed by the assessor:       Date:      

	Feedback to candidate

     

Request for Qualification Issue

As the assessor this course working with this learner, my records indicate the following Statements of Attainment/Qualification should be issued as detailed below:
	Student’s Name:
	

	Organisation:
	

Qualification/Statements of Attainment Details

	Statement/s of Attainment
Units of Competency to be issued

	
Tick if SOA required
	Full Qualification

ICT30120 Certificate III in Information Technology

	
Tick if Qualification required

	
	BSBCRT311
Apply critical thinking skills in a team environment*
	
	BSBCRT311
Apply critical thinking skills in a team environment*

	
	BSBXCS303 Securely manage personally identifiable information and workplace information*
	
	BSBXCS303 Securely manage personally identifiable information and workplace information*

	
	BSBXTW301 Work in a team*
	
	BSBXTW301 Work in a team*

	
	ICTICT313 Identify IP, ethics and privacy policies in ICT environments*
	
	ICTICT313 Identify IP, ethics and privacy policies in ICT environments*

	
	ICTPRG302 Apply introductory programming techniques*
	
	ICTPRG302 Apply introductory programming techniques*

	
	ICTSAS305 Provide ICT advice to clients*
	
	ICTSAS305 Provide ICT advice to clients*

	
	ICPDMT3210 Capture a digital image
	
	ICPDMT3210 Capture a digital image

	
	ICTWEB304 Build simple web pages
	
	ICTWEB304 Build simple web pages

	
	ICTWEB305 Produce digital images for web
	
	ICTWEB305 Produce digital images for web

	
	ICTWEB306 Web presence social media
	
	ICTWEB306 Web presence social media

	
	ICTSAS308
Run standard diagnostic tests
	
	ICTSAS308
Run standard diagnostic tests

	
	ICTSAS309
Maintain and repair ICT equipment and software
	
	ICTSAS309
Maintain and repair ICT equipment and software

	
	BSBTEC101 Operate a digital device
	
	BSBTEC101 Operate a digital device

	
	BSBTEC203
Research using internet
	
	BSBTEC203
Research using internet

Qualification requirements: 6 core units (asterisk) and 6 elective units
Assessor’s Review

	As the assessor I have…
	Yes
	No

	Checked that all units of competency listed have been judged Competent.

	
	

	Checked other Training Package requirements have been addressed (e.g. foundation skills, essential elements, etc.)

	
	

	Confirmed Literacy and Numeracy requirements as per qualification have been achieved.
	
	

	Comments:
     

	Assessor’s Name:
	

	Assessor’s Email:
	     
	Assessor’s Telephone:
	     

	Authorised by School/Institution Representative:
	

	Date:
	

	Processed at RTO by:
	     

	Date:
	     

Note: The issuing of the qualification incurs a fee. This may change so contact TEIA for the most current arrangement. An invoice will accompany the printed documents and be returned by post to either the candidate or the funding organisation.

Glossary

This glossary explains common terminology used in the VET sector and in this trainer’s and assessor’s guide.

Access and equity: Applying access and equity principles to training and assessment means meeting the individual needs of learners without discriminating in terms of age, gender, ethnicity, disability, sexuality, language, literacy and numeracy level, etc.

Assessment: Assessment means collecting evidence and making decisions as to whether a learner has achieved competency. Assessment confirms the learner can perform to the expected workplace standard, as outlined in the units of competency.

Assessment mapping: Assessment mapping ensures assessments meet the requirements of the unit/s of competency through a process of cross-referencing.

Assessment records: Assessment records are the documentation used to record the learner’s evidence of competency.

Assessment tools: Assessment tools are the instruments and procedures used to gather, interpret and evaluate evidence.

AQTF: The AQTF is the Australian Quality Training Framework. It was superseded by the VET Quality Framework and the Standards for NVR Registered Training Organisations in some jurisdictions in July 2011.
AQTF standards: The AQTF standards are national standards designed to ensure high-quality training and assessment outcomes. They were superseded by the VET Quality Framework and the Standards for NVR Registered Training Organisations in some jurisdictions in July 2011.

ASQA: ASQA is the Australian Skills Quality Authority, the national regulator for Australia’s vocational education and training sector. ASQA regulates courses and training providers to ensure nationally approved quality standards are met.

Authentic/authenticity: Authenticity is one of the rules of evidence. It means the learner’s work and supporting documents must be genuinely their own.

Competency: Competency relates to the learner’s ability to meet the requirements of the unit/s of competency in terms of skills and knowledge.

Current/currency: Currency is one of the rules of evidence. It means ensuring the learner’s skills and knowledge are up to date.

Delivery plans: Delivery plans are lesson plans that guide the process of instruction for trainers.

Dimensions of competency: The dimensions of competency relate to all aspects of work performance. There are four dimensions of competency: task skills, task management skills, contingency management skills and job/role environment skills.

Fair/fairness: Fairness is one of the principles of assessment. It means assessments must not be discriminatory and must not disadvantage the candidate.

Flexible/flexibility: Flexibility is one of the principles of assessment. It means assessments must meet the candidate’s needs and include an appropriate range of assessment methods.

Knowledge evidence: Knowledge evidence is specified in the unit of competency. It identifies what a person needs to know to perform the work in an informed way.

Performance evidence: Performance evidence is specified in the unit of competency. It describes how the knowledge evidence is applied in the workplace.

Principles of assessment: Principles of assessment ensure quality outcomes. There are four principles of assessment – fair, flexible, valid and reliable.

Recognition: Recognition is an assessment process where learners match their previous training, work or life experience with the performance and knowledge evidence outlined in the units of competency relevant for a qualification.

Reliable/reliability: Reliability is one of the principles of assessment. It means that assessment must have a common interpretation.

Rules of evidence: Rules of evidence guide the collection of evidence. There are four rules of evidence – it must be valid, sufficient, current and authentic.

Skill sets: Skill sets are single units of competency or combinations of units of competency that link to a licence, regulatory requirement or defined industry need. They build on a relevant qualification.

Standards for NVR Registered Training Organisations 2011: The Standards for NVR Registered Training Organisations superseded the AQTF in some jurisdictions in July 2011. They are designed to ensure nationally consistent, high-quality training and assessment services for the clients of Australia’ s vocational education and training (VET) system.

Sufficient/sufficiency: Sufficiency is one of the rules of evidence. Sufficiency of evidence means there is enough to satisfy the unit/s of competency.

Training and assessment strategy: A training and assessment strategy must be developed by training organisations for all their training programs. It is a framework that guides the learning requirements.

Valid: The term valid relates to the rules of evidence and principles of assessment. It means meeting the unit/s of competency’s performance and knowledge evidence requirements.

Validation of assessment: Validation of assessment means a range of assessors must review, compare and evaluate assessments and assessment processes on a regular basis to ensure they meet the unit/s of competency assessed. The evaluation process must be documented and form part of the RTO’s continuous improvement process.

VET Quality Framework: The VET Quality Framework superseded the AQTF in some jurisdictions in July 2011. It is aimed at achieving greater national consistency in the way providers are registered and monitored and in how standards in the VET sector are enforced.

	© Aspire Training & Consulting

	2

